Trainers
- class BaseTrainer[source]
Bases:
ABC
Base trainer class for all models.
- __init__(model, train_loader, val_loader=None, optimizer=None, scheduler=None, device='cpu', monitor_metric='loss', logger=None)[source]
- Parameters:
model (Any) – Model to train
train_loader (DataLoader) – Training data loader
val_loader (DataLoader | None) – Validation data loader
optimizer (Optimizer | None) – Optimizer to use
scheduler (Any | None) – Learning rate scheduler
device (str) – Device to use for training
monitor_metric (str) – Metric name to monitor for early stopping and model saving
logger (BaseLogger | None) – Logger instance for experiment tracking
- class SegmentationTrainer[source]
Bases:
BaseTrainer
Trainer class for semantic segmentation models.
- __init__(model, train_loader, val_loader=None, optimizer=None, scheduler=None, device='cpu', metrics=None, ignore_index=None, monitor_metric='seg_loss', logger=None)[source]
Initialize trainer.
- Parameters:
model – Model to train
train_loader – Training data loader
val_loader – Validation data loader
optimizer – Optimizer
scheduler – Learning rate scheduler
device – Device to use
metrics (List[Callable] | None) – List of metric functions to compute during validation
ignore_index (int | None) – Index to ignore in metrics computation
monitor_metric (str) – Metric to monitor for early stopping
logger (BaseLogger | None) – Logger instance for experiment tracking
Segmentation Trainer
- class SegmentationTrainer[source]
Bases:
BaseTrainer
Trainer class for semantic segmentation models.
- __init__(model, train_loader, val_loader=None, optimizer=None, scheduler=None, device='cpu', metrics=None, ignore_index=None, monitor_metric='seg_loss', logger=None)[source]
Initialize trainer.
- Parameters:
model – Model to train
train_loader – Training data loader
val_loader – Validation data loader
optimizer – Optimizer
scheduler – Learning rate scheduler
device – Device to use
metrics (List[Callable] | None) – List of metric functions to compute during validation
ignore_index (int | None) – Index to ignore in metrics computation
monitor_metric (str) – Metric to monitor for early stopping
logger (BaseLogger | None) – Logger instance for experiment tracking
- train_step(batch)[source]
Perform a single training step.
Base Trainer
- class BaseTrainer[source]
Bases:
ABC
Base trainer class for all models.
- __init__(model, train_loader, val_loader=None, optimizer=None, scheduler=None, device='cpu', monitor_metric='loss', logger=None)[source]
- Parameters:
model (Any) – Model to train
train_loader (DataLoader) – Training data loader
val_loader (DataLoader | None) – Validation data loader
optimizer (Optimizer | None) – Optimizer to use
scheduler (Any | None) – Learning rate scheduler
device (str) – Device to use for training
monitor_metric (str) – Metric name to monitor for early stopping and model saving
logger (BaseLogger | None) – Logger instance for experiment tracking
- abstract train_step(batch)[source]
Perform a single training step.
- abstract validate_step(batch)[source]
Perform a single validation step.